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REFLECTION AND TRANSMISSION OF ACOUSTIC WAVES 

FROM A MOVING LAYER 

By George G. Steinmetz and Jag J. Singh 
Langley Research Center 

SUMMARY 

The refraction of acoustic waves by a moving medium layer is theoretically treated 
and the expressions for reflection and transmission coefficients are determined. The 
moving medium layer velocity is assumed to have a space dependence in one direction. A 
partitioning of the moving medium layer into constant-velocity sublayers is introduced and 
the number of sublayers is allowed to increase until the reflection and transmission coef
ficients converge to their respective values. 

The introduction of the input impedance concept and the use of several dummy vari
ables molds the equations into a form very suitable for computation. Numerical results 
have been obtained for several sublayer approximations of Poiseuille's flow as functions 
of the moving layer velocity for several angles of incidence of the acoustic wave. The 
refined approximations are shown to converge. The degenerate case of a single constant-
velocity layer is also treated, both theoretically and by a numerical analysis. 

INTRODUCTION 

The investigation of reflection and transmission coefficients of an acoustic wave 
from a moving layer has been treated by a number of authors. (See refs. 1 to 5.) These 
calculations indicate that the reflection and transmission coefficients are strong functions 
of the velocity of the medium and the angle of incidence of the acoustic waves. However, 
most of these treatments have been confined to medium velocities which a r e  constant; 
that is, the medium flow is both time and space independent: 

dV=Constantdx 

where V is velocity, t is time, and x and y are coordinates. 
cases, the medium flow exhibits a space dependence. For instance, 

In many practical 
the liquid flow through 



cylindrical pipes has a strong velocity gradient along one space axis. This well-known 
case of Poiseuille's flow can be described by a second-order polynomial. A problem of 
this type may be approximately treated by partitioning the moving layer into a number of 
sublayers and considering the velocity in each sublayer to be constant. 

It is the purpose of this report to  define suitable computational techniques for study
ing the propagation of an acoustic wave through a medium moving with space-dependent 
velocity. The approach is, as indicated previously, to divide the moving medium into 
constant -velocity sublayers and use the existing theoretical solutions to propagate the 
wave across each of the sublayers. This procedure involves matching boundary condi
tions deduced from the requirements that the pressure must be continuous and the instan
taneous component of the resultant velocity (stream and acoustic) locally normal to the 
rippled interface between the adjacent layers must be the same on both sides (ref. 6). 
The mathematical development is for a general n-sublayer case. Numerical results a r e  
given for a small number of sublayers (5) and for a large number of sublayers (25 to 45). 
An optimum number of sublayers based on convergence in the magnitudes of the reflection 
and transmission coefficients, as the partitioning is refined, a r e  sought. A preliminary 
account of this work has been presented in reference 7. 

SYMBOLS 


An amplitude of transmitted wave 


Bn amplitude of reflected wave 


C speed of sound 


d depth of entire medium 


dn depth of nth sublayer 


i =  


kn = Iknl= (w - vnkn,x)/cn 


M number of layers 


n number of sublayers, n = 1, 2, 3, . . ., M 

P acoustic pressure 
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R reflection coefficient of moving layer, nondimensional 

T transmission coefficient through moving layer, nondimensional 

t time 

I- 7 1/2 

UX x-component of acoustic velocity 


uY y -component of acoustic velocity 


V medium flow velocity 


X, Y Cartesian coordinates 


Z characteristic impedance of medium 


zin input impedance of medium 


I 

a! modulus of y-component of propagation vector 

e angle at which incident acoustic wave strikes medium (or leaves medium) 

P density of fluid 

U modulus of x-component of propagation vector 

w acoustic wave frequency 
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* PROBLEM APPROACH 

Figure 1illustrates the three-layer basic problem. Layers 1and 3 are stationary, 
and layer 2 has space-dependent flow. Layer 2 is partitioned into M - 2 sublayers, 
each with a constant velocity. (Details of the partitioning technique are presented in a 
subsequent section.) For individual sublayers, the problem can be treated in the manner 
of the constant-velocity cases (ref. 2). Basic equations for the acoustic propagation for 
constant-velocity layers are (ref. 1)as follows: 

1 aPnaux, n + vn -+ --= 0at ax Pn ax 

where subscript n denotes a particular sublayer (n = M and 1 represent the top and 
bottom stationary layers, respectively). 

The general solution in a layer n = 1, 2, . . ., M is as follows: 

or 

where An and Bn represent the amplitudes of the transmitted and the reflected waves, 
respectively. Note that for n = 1, B1 = 0 since there is no reflected wave in that layer. 
The propagation vectors an and on are defined as follows: 

a n =  kn,y = Iknl COS On 
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where 

The boundary conditions that must be met at each sublayer interface are continuity 
of the acoustic pressure 

and the instantaneous component of the resultant velocity locally normal to the applied 
interface 

Let each layer impedance be denoted by Zn, where 

with 

After applying the foregoing boundary conditions, the input impedance Z: is given'by 
the following expression (ref. 5): 

in -where dn is the nth sublayer depth and Z 1  - Z1. 

The reflection (at the surface of the moving medium) and transmission (through the 
moving medium) coefficients are then given by 
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and 

T = '=F1j= 1 [Zj + Zp)/bj+l + Zpjexp(iajdj)  

It should be emphasized that velocity dispersion and other frequency-dependent effects 
have been ignored in these calculations. 

ANALYSIS AND RESULTS 

Let the acoustic source be located in the Mth layer an( let be the wic th o f t  
moving medium. The value of k d ,  even though M is a variable (Le., a function of the 
number of partitioned layers chosen to approximate the moving medium), is maintained 
constant for all values of M. (See ref. 5.) For notational convenience, a new variable 
tn is defined as 

The variable tn is a complex number for selected ranges of Vn/Cn and it is either 
real or imaginary with the passage between the two regions yielding tn = 0;  tn is imag
inary if 

1 - sin OM vn sin OM + 1 
<-<

sin OM Cn sin OM 

and tn is zero for 

Otherwise, tn is real. 

A new impedance En is now defined in t e rms  of tn as follows: 
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The new input impedance is given by 

where A = k& cos 
If tn = 0, then limits must be taken to find the value of - i n  . The appropriateZ, 

limits yield 

Now, the resulting reflection and transmission coefficients are given by 

and 

Assume identical media in all layers, that is, p1 = p2 = . . .- pM and 
C1 = C2 = . . .= Cw The case of a single layer with constant velocity can be 
treated as a special case of the given formula. 

The reflection coefficient for the special case can be shown to vanish at points 
of V/C for fixed incident angles 8 by 

If 1 = 0, then tn = 0 and the limit process given by equation (14) must be used. Fig
ures 2 and 3 illustrate the calculated values of the magnitudes of the reflection and trans
mission coefficients as functions of V/C for two values of e. 



Let the moving' medium velocity now have a one-dimensional space dependence. 
Chosen for this example is Poiseuille's flow in which the velocity is described by the fol
lowing parabolic curve: 

(O P y 5 l ;  -.2 IV 5 +2) 

Let the moving medium be partitioned into three equal (dl = d2 = d3) sublayers (M = 5) and 
the velocity in each sublayer be treated as a constant determined by the value at the mid
point of the layer. The geometry of this situation is shown in figure 4. Calculated val
ues of the magnitudes of the reflection and transmission coefficients for the M = 5 case 
are shown in figures 5 and 6, respectively. 

The three-equal-sublayer case (M = 5) is at best a crude approximation of the para
bolic flow. Clearly, increasing the number of sublayers gives a better approximation. It 
appears more appropriate, however, to  maintain some limiting difference between flow 
velocity in adjacent layers  instead of a constant partition width, as has been done so f a r .  
With this new technique, a variable width partitioning was used, based on the criterion that 
the flow velocity difference between adjacent layers will not exceed a certain fraction of 
the peak flow velocity. 

Two examples of this calculational refinement are presented. In the first example, 
the adjacent-layer velocity difference was restricted to a value 510 percent of the maxi
mum velocity. The partitioning scheme is illustrated in figure 7. Note that the flow 
symmetry about the midstream point is preserved. The magnitudes of the reflection and 
transmission coefficients calculated for  M = 25 are shown in figures 8 and 9, respec
tively. In the second example, the partitioning was refined even further by requiring that 
the adjacent-layer flow rates differ by 55 percent of the maximum flow rate. The calcu
lated magnitudes of the reflection and transmission coefficients for the M = 45 case are 
illustrated in figures 10 and 11, respectively. A comparison of the results of these two 
examples reveals that they are almost the same, which indicates a convergence in the 
respective values of the reflection and transmission coefficients. It would thus appear 
that a criterion of AV S O.lVm, and M = 25 gives a sufficiently accurate represen
tation of the actual flow. 

DISCUSSION OF RESULTS 

For the degenerate case of a single velocity layer, the magnitudes of the reflection 
and transmission coefficients given by equations (15) and (16) are the same as those 
reported in the literature (ref. 2). The graphical representations of these equations given 
in figures 2 and 3 agree with the zeros of IRI as defined by equation (17). 
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The pattern of the magnitudes of the reflection and transmission coefficients exhib
ited in figures 5, 6, 8, 9, 10, and 11for the cases of a partitioned y-dependent flow shows 
a generally similar, but distinctly different, signature from that of the case of a single 
constant-velocity layer. The position of zeros of IR1 has been altered somewhat as M 
is increased. For example, the zero value of [RI has shifted outward to higher numer
ical values of [V/C 1 for higher M values, with convergence in the highest M values. 
Equation (17) is not valid for any case but M = 3 and the method of solving for zeros 
of IR I becomes very cumbersome for more than a single moving layer. A comparison 
of the results for refined partitioning with the results for the crude three-sublayer case 
indicates very little change in contrast to the degree of difference between the results for 
the single layer and multilayer cases. The difference between the two highly refined par
titioned cases (M = 25 and M = 45) is hardly detectable, which indicates that the reflec
tion and transmission coefficients have converged to their respective values at M = 25. 

The computer solution requirements for the final equation are minimal as a result 
of the form in which these equations were cast. The results presented for each case in 
this publication represent under 45 seconds of central processing time on the Control 
Data 6600 computer system. Note that this processing includes three different angles of 
incidence and a sweep of V/C between *2.0 with AV/C of 0.01. The processing of the 
M = 45 case required a threefold increase in time over that of the M = 5 case. 

CONCLUDING REMARKS 

The reflection and transmission of acoustic waves by a medium moving with 
Poiseuille's flow have been treated theoretically. The moving medium was  subdivided 
into a number of sublayers, with each sublayer having a constant velocity. The number 
of sublayers was allowed to increase until a saturation was achieved in the values of 
reflection and transmission coefficients. 

With the introduction of the input impedance concept and the use of several dummy 
variables, the equations have been altered into a form very suitable for computer analysis. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., February 8, 1972. 
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Figure 1.- Geometry of the problem. 
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Figure 3.- 	 Absolute values of the transmission coefficient as a function of the velocity of the moving medium 
for two angles of incidence. M = 3; k& = 2.0; p = 1.000; 81 = 10.Oo; 82 = 30.0'. 
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Figure 4.- Partitioning of moving medium for three sublayers. 

-V(Y1 = 4 (g) y(1 - y) where y = (0 - 1.0).C max 
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Figure 5.- Absolute values of the reflection coefficient as a function of the velocity of the moving medium 
for three angles of incidence. M = 5; k d  = 2.0; p = 1.000; 81 = 10.Oo; 82 = 20.0°; 83 = 30.0'. 
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Figure 6. - Absolute values of the transmission coefficient as a function of the velocity of the moving medium 
for three angles of incidence. M = 5; k& = 2.0; p = 1.000; 81 = 10.0'; O2 = 20.0'; 83 = 30.0'. 
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Figure 7. - Uniform velocity multilayer approximation of Poiseuille’s flow (M = 25). Velocity difference between 
any two adjacent layers equals 10 percent of the maximum fluid flow rate. 
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Figure 8.- Absolute values of the reflection coefficient as a function of the velocity of the moving medium 

for three angles of incidence. M = 25; k@ = 2.0; p = 1.000; 81 = 10.0'; 82 = 30.0'; 83 = 45.0'. 
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Figure 9. - Absolute values of the transmission coefficient as a function of the velocity of the moving medium 
for three angles of incidence. M = 25; k& = 2.0; p = 1.000; O1 = 10.Oo; O2 = 30.0'; O3 = 45.0'. 
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Figure 10.- Absolute values of the reflection coefficient as a function of the velocity of the moving medium 
for three angles of incidence. M = 45; k$ = 2.0; p = 1.000; 8 1  = 10.0'; 82 = 30.0'; 83 = 45.0'. 
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